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Abstract—Understanding the deoxyribonucleic acid (DNA)
sequence is a major component of bioinformatics research. The
amount of biological data increases tremendously. Hence, there
is a need for effective approaches to handle the critical problem
in the general computational framework of DNA sequence pre-
diction and classification. Numerous deep learning languages can
be used to complete these tasks compared to manual techniques
that have been followed for ages. The aim of this project is to
employ effective approaches for pre-processing DNA sequences
and using deep learning languages to train the sequences for
making judgments, predictions, and classifications of DNA se-
quences into known categories. In this study, the pre-processing
methods include k-mers and tokenization. We employ a novel
hybrid deep learning algorithm that combines convolutional
neural networks and is followed by bidirectional gated recurrent
networks. This combination can capture dependencies within the
genome sequence, even in large datasets with a lot of noise. The
proposed model is compared with existing widely used models and
classifiers. The results show that the proposed model achieves a
good result with an accuracy of 82.90%. The dataset consists of
44,391 labeled DNA sequences obtained from the Encode project.

Keywords—DNA sequencing; deep learning; convolutional neu-
ral networks; bidirectional gated recurrent; k-mer; tokenizing

I. INTRODUCTION

Deoxyribonucleic acid (DNA) is unique. It contains a list
of genetic codes which look likes no order random letters
of adenine (A), cytosine (C), guanine (G), and thymine (T).
Eventually, it is organised into little chunks that carry a set
of meaning instructions for how to build and maintain body.
The little chunks in known as genes. Most genes are alike
to each other, only a small number of genes are slightly
different between people, that resulted the uniqueness physical
features. Genes instruct cells how to make proteins. As we
need protein to repair cells and make a new ones for growth
and maintenance of tissues. Our body proteins suppose is a
constant state of turnover. Nevertheless, errors happen during
the journey from genes to protein, it can develop into unhealthy
genes and cause cells abnormal in growing.

To discovery these abnormal ChIP-seq is relying on exper-
imental analysis the structures of DNA binding sequences [3],
[4], [5]. These experimental analysis usually is time consuming
[6], [7]. With quick expansion in the amount of genomic DNA,
there is a need for efficient methods in predicting ChIP-seq

allows the binding sites of transcription factors (TF). Hence,
deep learning and machine learning are widely applied in
predicting the DNA sequence binding specificities.

Deep learning techniques have accomplished exceptional
outcomes in computer vision [8], [9], natural language pro-
cessing [10], [11], bioinformatics [12], [13] and image analysis
[14], [15]. Methods based on convolutional neural networks
(CNN) [16] and recurrent neural networks (RNN) [17], [18]
like gated recurrent unit (GRU), long short-term memory
networks (LSTM) have been proposed to analyse and predict
genome DNA. These techniques have been improved to gener-
ate autonomous prediction at learning process that spot specific
trends and patterns to make better decisions based on the given
data.

DeepBind [19] is pioneer CNN with single convolution
layer, pooling operation and fully connected network. The
design demonstrates a promising result to predict the sequence
specification of DNA and ribonucleic acid (RNA) binding.
This has inspired the following research like DeepSHR [20],
DeepSEA [21] and Dilated [22]. KEGRU [23] uses a bidirec-
tional gated recurrent (BiGRU) unit with k-mer sequences to
find RNA protein binding sites. This method allows mining
long dependencies of the sequences and thus achieves good
performance in binding sites. DanQ [24] is a hybrid CNN
+ bidirectional LSTM (BiLSTM) model that applies the ca-
pabilities of CNN in extracting DNA features and BiLSTM
in handling long range dependencies in order to obtain good
performance.

Despite all these studies, there is a gap in finding a fair
comparison which deep learning architectures perform well in
detecting DNA sequences. As some methods use one-hot to
code the DNA sequences, some use k-mer. One-hot is mutual
orthoganal, it ignores the DNA sequence dependencies. k-mer
overcomes the issue of one-hot by adjoining DNA sequences.
Hence, this paper considering k-mer for data pre-processing
in finding the dependency between the genome patterns and
possibility independence for the underlying genome. Next,
tokenize the k sequences to prepare a bag of vocabulary for
deep learning process. This research, we aim to propose hybrid
deep learning with CNN and BiGRU (DeepBiG) to classify
Chromatin Immunoprecipitation Sequencing (ChIP-seq) data
from lymphoblastoid cells (GM12878) and K562 chronic
myelogenous leukemia (CML) obtained from the Encyclopedia
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of DNA Elements (ENCODE). CNN consists of extraction and
representation capabilities. BiGRU allows capture long-range
dependencies and thus obtains good performance. Next, Deep-
BiG is compared with different deep learning architectures
with the same parameters and same dataset. Noted that, the
ability in identifying the specific ChIP-seq can significantly
improve our understanding on the epigenetic mechanism of
the disease, thus promoting precision in drug discovery [1],
[2].

The rest of this paper is organized as follows: Section II
provides the experimental processes which include data pre-
processing, deep learning algorithms. Section III presents the
proposed model - DeepBiG. Evaluation matrices is shown
in Section IV. Section V shows the experiment results and
discusses the finding. Finally, Section VI concludes the paper.

II. MATERIALS AND METHODS

The dataset includes 22832 labelled ChIP-seq data
GM12878 lymphoblastoid cell and 21559 labelled ChIP-seq
K562 chronic myelogenous leukemia (CML) cell. GM12878
is generated by Epstein–Barr virus which may cause infectious
mononucleosis. K562 is one of the immortalized myelogenous
leukemia cell that may cause for cancers of the blood cells.
The TF of GM12878 consists ELK1 (5084 ChIP-seq) and
SP1(17748 ChIP-seq). The TF of K562 consists ARID3A
(9526 ChIP-seq) and CTCFL (12033 ChIP-seq). The dataset
are obtained from Encode which has been processed and been
provided in [19]. There are 44391 DNA cells in total and with
no missing labelled. All the DNA sequences are labelled as
0 or 1. GM12878 sequences are labelled as 0 while K562
sequences are labelled as 1. Noted that the rational to choose
the number of ChiP-seq is almost balance is to ensure model
may perform the unbiased prediction. Saying that if given the
ChIP-seq, the probability to perform the prediction manually
towards the given ChIP-seq either is either GM12878 cell or
K562 is about 50%.

A. Data Pre-processing

The data pre-processing steps are to transform the dataset
into a uniform format that can be understood by the learning
algorithms include k-mers and text tokenizer. k-mers is the
common method for tokenizing the genome that splitting the
long DNA sequence into k length biological sub-sequences
[25], [26]. As shown in Table I, there are five k-mers where
we can tokenize the sequence “AGGTCCGGGTCT”. The five
different k-mers will result different tokens and hence affect
the performance of the language models. The k-mers range is
between two until six are chosen as 1-mer will not provide any
useful DNA sequence relation and accuracy prediction after 6-
mers is decreased.

TABLE I. EXAMPLE BIOLOGICAL SUB-SEQUENCES GENERATED BY
k-MERS AND THE NUMBER SEQUENCE INDEX

v

k-mers Biological k-mers sub-sequences Distinct Sequence
2 AG GG GT TC CC CG GG GG GT TC CT 16
3 AGG GGT GGC TCC CCG CGG GGG GGT 64
4 AGGT GGGC GTCC TCCG CCGG CGGG GGGT 256
5 AGGTC GGTCC GTCCG TCCGG CCGGG CGGGT 1024
6 AGGTCC GGTCCG GTCCGG TCCGGT CCGGTC 4096

Tokenizer is essential to boost the performance of the
natural language processing model. Firstly, creates a bag of
“vocabulary” of ChiP-seq by transforming the splitting block
of sequence based on k-mers into integer. For example, the
bag of “vocabulary” for 2-mers ChIP-seq with 16 number of
distinct sequence is ‘gg’-1, ‘cc’-2, ‘gc’-3, ‘ct’-4, ‘ag’-5, ‘tg’-6,
‘ca’-7, ‘tc’-8, ‘ga’-9, ‘tt’-10, ‘aa’-11, ‘cg’-12, ‘gt’-13, ‘ac’-14,
‘at’-15, ‘ta’-16. Next, converts the long ChIP-seq into integer
based on the bag of “vocabulary”, such that given the sequence
“AGGTCCGGGTCT”, the tokenizing output based on 2-mers
is (5, 1, 13, 8, 2, 12, 1, 1, 13, 8, 4).

B. Convolutional Neural Networks (CNN)

Convolutional neural networks is deep neural networks that
widely applied at the artificial intelligence research fields such
that bioinformatics [27], [28], visual imagery [29] and natural
language processing [30]. The design of CNN is composed
of three layers, there are convolutional, pooling and fully
connected layers. The layers of convolutional and pooling
are designed to adaptive learn local information of original
features, then extract and represent the spatial hierarchies
features from low to high patterns through several feature
maps and kernels. The layer of fully connected performs
classification that maps the extracted features into final output.
More specifically, a convolutional layer and pooling layer
computes [31],

convolutional(X)i,k = Relu(

M−1∑
m=0

N−1∑
n=0

W k
mnXi+m,n)

pooling(Y )ik = max(YiP,k, YiP+1,k, ..., YiP+P−1,k) (1)

where X is the input matrix, i is index of output position, k
is the filter index, W k is an MxN matrix. Y is the output of
convolutional layer. P is the pooling.

C. Gated Recurrent Unit (GRU)

Gated recurrent unit network [32] is a deep learning
machine learning that to process and to uncover the underlying
relationship for a given sequences of data. The data can be text,
speech, video and images. Human brain activates the process
of acquiring information, forgetting and memory. The memory
can be long or short. The long-term memory is applied if the
matters are important. Otherwise, we tend to forget, which
called short-term memory. GRU is modeled like a human
brain which consists the process of reset and update. The reset
process help captures short-term dependencies in sequence.
The update process help captures long-term dependencies in
sequence. The inputs are ht−1 and xt. The reset and update
processes consist of two gates to manage the cell state’s infor-
mation. The two gates we denoted it as zt and rt, where zt is
the reset gate and rt is update gate. Wz and Wr are two weight
matrices as well as bzandbr are two bias value corresponding
to these two gates. The two gates are composed by a sigmoid
neural net layer (σ) and a pointwise multiplication operation.
The candidate hidden state we denoted it as Ĉt. Here, tanh
function is activated. The tt is the hidden state. The value of
zt is either close one or close zero. Old state is retained, if
value of zt is closed to one. Otherwise, new latent state tt.
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Noted that, these layers are repeating and form a chain. The
gate structures and cell states are calculated as follows [32]:

zt = σ(Wzxt + Vzhh−1 + bz)

rt = σ(Wrxt + Vrhh−1 + br)

Ĉt = tanh(WCxt + VC(rt.ht−1, xt))

tt = zt.ht−1 + (1− zt).Ĉt (2)

D. Bidirectional GRU (BiGRU)

Bidirectional GRU [33] accomplishes the training without
the limitation of using input information just up to a present
future frame. It predicts the sequence for each class using finite
sequence based on the context of elements of past and future.
One can see the two GRUs are executed parallel, one is forward
and another one is backward. Eq. 3 and 4 shows the calculation
of BiGRU that takes L inputs and H number of hidden units.
The final output of BiGRU is based on the hidden BiGRU
forward and backward values [33].

ath =

L∑
l=1

xt
l .wlh +

H∑
h′,t>0

bt−1
h′ .wh′h

(3)

aht = θh(a
h
t ) (4)

III. THE PROPOSED MODEL (DEEPBIG)

CNN architecture consists of convolutional layer, pool-
ing layer and fully connected layer. The proposed model is
composed with the modified CNN architecture by replacing
the fully connected layer with bidirectional GRU (BiGRU),
the first two layers are remained, which is shown in Fig. 1.
The rational of this design that remains the CNN first two
layers to shorten the training time while maintains the accuracy
during data processing by generalizing ChIP-seq patterns.
Next, replacing fully connected layer with the BiGRU is to
deal with the past and present order dependency information
in the ChIP-seq which may efficiently characterize the highly
complex order of ChIP-seq.

The first layer is a convolutional layer which is constructed
with 32 filters, five kernels with rectified linear units (relu) as
the activation function. During the training phase, the filters
and kernels read the input matrices with same weights, pro-
duces different strengths of signals and extracts the correlation
ChIP-seq patterns.

The second layer is a max pooling layer to improve the
reliability and performance in term of time for the proposed
model. It summarizes the feature maps so that the model will
not need to be trained by maximizing the output signals of
each kernel along the entire sequence.

The third layer is BiGRU to process the filtered correlated
ChIP-seq with its own interpretation by considering the context
of elements of past and future into its hidden state. The
interpretation is further propagated to the next GRU block.
Once the nucleotide is remarked, the last block of GRU makes
the final decision for the goodness of the probe.

The last layer is a non-linear transformation with sigmoid
activation. The sigmoid activation will produce a value be-
tween 0 and 1. This value represents the probability of a
binding preference of each probe. In this case, 0 is GM12878
ChIP-seq, 1 is K562 ChIP-seq.

The proposed model is implemented based on Keras
library. The experiment is undergo three phases: training,
validation and testing. For the training phase, the experiment
will randomly train 50% of the dataset and 25% dataset is
validated at validation phase. Then, remaining 25% dataset is
tested at testing phase. Early stopping is applied for overfitting.
Lastly, the performance for the models are evaluated. The
model is simulated on on graphical processing units (GPU)
with Intel(R) Core (TM) i9-10980XE CPU@ 3.00GHz, 128GB
random access memory and 1T hard disk.

IV. PERFORMANCE METRICS

A confusion metric is used to assess the performance of the
models on the data as shown in Table II. True positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN) are four assessment elements formulated in the confusion
matrix table. TN is both predict and actual events fall on
GM12878 ChIP-seq. The sequence is not K562 ChIP-seq. FP is
prediction is the model incorrectly classified GM12878 ChIP-
seq as K562 ChIP-seq. FN is the prediction is GM12878 ChIP-
seq but the actual is K562 ChIP-seq. TP is both predict and
actual events fall on K562 ChIP-seq that are correctly classified
by the model.

TABLE II. CONFUSION MATRIX

GM12878 seq K562 seq
GM12878 seq True Negative (TN) False Positive (FP)

K562 seq False Negative (FN) True Positive (TP)

With this matrix, one may evaluate the performance of the
design model based on accuracy, precision, recall, and F1-score
are as follows.

1) Accuracy: Accuracy refers to how close a measurement
is to the accepted value. As shown in Eq. 5 [34], the accuracy
is the proportion of correct predictions for both true positive
and true negative. High accuracy requires high precision and
high trueness.

Accuracy(A) =
TP + TN

TP + FP + FN + TN
(5)

2) Precision: Precision refers to positive predictive value.
As shown in Eq. 6 [34], the precision is the fraction of correct
predictions among the true and false positive (such as correct
predict the DNA sequence is K562 ChIP-seq). High precision
requires high trueness.

Precision(P ) =
TP

TP + FP
(6)

3) Recall: Recall refers to sensitivity of the model in
capturing true positive value. As shown in Eq. 7 [34], the
recall value is the fraction of correct predictions among the
actual positive value.

Recall(R) =
TP

TP + FN
(7)
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Fig. 1. Proposed Model - DeepBiG.

4) F1-Score: F1-score refers to seek for balance of the pre-
cision and recall. As shown in Eq. 8 [34], F1-score measures
is there any uneven class distribution.

F1− Score(F1) =
2 ∗ P ∗R
P +R

(8)

V. RESULT AND DISCUSSION

The results and discussion consist tables of performance
metric in percentage that include accuracy, precision, recall
and F1-score as well as model training time in minutes. There
are four types of performance metrics comparison: 1) The com-
parison k-mers spectra with each being tokenized before being
trained based on DeepBiG. 2) The comparison performance
metric with difference combination of activation functions. 3)
The comparison performance metric with different types of
models and classifiers. 4) The comparison performance metric
with different datasets.

A. Performance Comparison with Different k-mers

Table III shows the performance metric for k-mers spectra
to evaluate genome assemblies. Noted that Class 0 is GM12878
and Class 1 is K562. Time is model training time in minutes.
There are 2-mers, 3-mers, 4-mers, 5-mers and 6-mers. The
accuracy increases from 2-mers to 4-mers and decreases after
4-mers. The simulations show 4-mers outperforms compare
with others k-mer spectra with only 63 minutes in model
training and 82.90% accuracy in predicting the ChIP-seq either
belong to GM12878 or K562. However, the F1-score, the

weighted average of precision and recall for 3-mers is better
with only 1% different between class 0 and class 1 compare
with 4-mers with 2% difference. But, the training time for
3-mers is double compare with 4-mers.

TABLE III. PERFORMANCE RESULTS IN TERM OF ACCURACY,
PRECISION, RECALL AND F1-SCORE FOR DEEPBIG MODEL

k-mers Time A (%) Class P (%) R(%) F1(%)
2 99 81.70 0 78 90 84

1 87 73 79
3 133 82.70 0 85 81 83

1 81 84 82
4 63 82.90 0 82 86 84

1 84 80 82
5 91 79.60 0 82 78 80

1 78 81 79
6 67 77.30 0 84 70 76

1 72 86 78

Fig. 2 displays the accuracy and loss for 4-mers during
the training and validation phases with the highest accuracy is
88.17% and 82.80%, respectively. Early stopping at epochs
8 as overfitting occurred. This is one of the limitation of
the design but it provides better accuracy compare with other
models or classifiers as shown in Table V. Therefore, 4-mers
encoding DeepBiG is chosen for the remaining experiments.

B. Performance Comparison with Different Activation Func-
tions

Table IV shows the simulation results for different combi-
nation activation functions like relu, softmax and tanh. These
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Fig. 2. DeepBiG using 4-mers, the training / validation’s accuracy and loss.

activation functions are generally applied in deep learning
models. The result shows that activation softmax for the last
layer is preferable as it compatible with the adam optimizer
and categorical cross-entropy loss. The accuracy for models
where last layer is softmax activation is more than 80%. Relu
and tanh are not suitable to be placed at last layer as vanishing
gradient problem, in this simulation, class 0 is on higher side
as the number of dataset is larger compares with class 1, then
the gradient will be near zero. This has resulted no learning
during backpropagation for class 1 as weights is updated with
really small values. Noted that the simulation dataset for Class
0 is GM12878 and Class 1 is K562. Time is model training
time in minutes.

DeepBiG is using relu activation at CNN layer and softmax
activation at last layer. The performance in term of accuracy
is higher almost 2% compares with relu and tanh activation in
CNN layer. DeepBiG training time is double faster compares
to softmax activation and 6 minutes quicker compares to tanh
activation.

TABLE IV. COMPARISON PERFORMANCE RESULTS IN TERM OF
ACCURACY, PRECISION, RECALL AND F1-SCORE FOR DIFFERENT TYPES

OF MODELS

Models Time A (%) Class P (%) R(%) F1(%)
Relu∗ - Softmax+ 63 82.90 0 82 86 84

1 84 80 82
Softmax∗ - Softmax+ 134 81.00 0 86 76 81

1 77 86 81
Tanh∗ - Softmax+ 76 80.60 0 81 81 81

1 80 80 80
Softmax∗ - Tahn+ 34 51.40 0 51 100 68

1 0 0 0
Softmax∗ - Relu+ 39 51.40 0 51 100 68

1 0 0 0
Relu∗ - Relu+ 34 51.40 0 51 100 68

1 0 0 0

C. Performance Comparison with Different Existing Predic-
tors

Table V compares the performance in term of accuracy,
precision, recall and F1-score between the deep learning
models and machine learning classifiers. The dataset for Class

0 is GM12878 and Class 1 is K562. Time for these sim-
ulation is recorded in minutes. The deep learning models
are bidirectional GRU (BiGRU), bidirectional long short-term
memory (BiLSTM), CNN and the combination models. The
machine learning classifiers are Naı̈ve Bayes (NB), K-Nearest
Neighbors Algorithm (KNN) and Random Forest (RF). Each
method is simulated using the same dataset as stated and
the dataset undergoes the pre-processing process as shown in
Section II. The parameters for deep learning models are similar
with DeepBiG which using dropout ratio of 0.1, kernel number
is 5, cell number is 10, epochs is 15 and batch size is 64. The
parameters for machine learning classifiers are varied for each
others. NB smoothing parameter is set between the range of
0.1, 1, 10, 100 and 1000. In the KNN classification, the number
of neighbors to be used in this simulation is in the range of 2,
5, 8, 10 and 15. For RF, the number of trees in the forest is
set in the range of 10, 25, 30, 50, 100 and 200. The maximum
depth of the tree is in the range of 2, 3, 5, 10 and 20. The
minimum number of samples require to be at a leaf node is in
the range of 5, 10, 20, 50, 100 and 200.

Deep learning models outperform compare to machine
learning classifiers in term of accuracy, average is 80%.
Machine learning classifiers’ accuracy in average 55%. The
result demonstrates the performance in term of accuracy of
the proposed DeepBiG model is the highest (82.90%) by
comparing with other models and classifiers on the same
dataset. It follows by CNN + BiLSTM model with 81%
accuracy. The training time for CNN is the only requires
only 6 minutes but the accuracy below 80%. The weakest
performance is NB classifier with best parameter 1000 achieves
only 54.10% accuracy.

We noted overfitting with the symbol of ∗. The simulation
dataset is long sequence with combination of nucleobases,
A,C,G, and T. For each long ChiP-seq, it might contains some
irrelevant DNA information related with the TF. We named it
as noisy data. The models like DeepBiG, BiGRU, BiLSTM,
CNN and CNN+BiLSTM learn the noisy within the training
data. This has caused the overfitting. Hence, two solutions are
provided to overcome the overfitting by adding dropout in the
model and early stopping during training phase.

D. Performance Comparison with Different Size of Datasets

To further assess the performance of DeepBiG, we con-
duct experiments on four different combination TF datasets
using DeepBiG and CNN+BiLISTM as shown in Table VI.
The dataset include GM12878-ELK1, GM12878-SP1, K562-
ARID3A and K562-CTCFL. Class 0 is GM12878 and Class
1 is K562. Simulation time is recorded in minutes.

Based on the results, we find that when the dataset size
is smaller, the accuracy rate for DeepBiG is above 82.9%. If
the dataset is smaller, the noisy decreases, this has resulted
the increase of accuracy rate. Hence, this has proven there are
noisy for the simulation dataset in Table V indirectly.

From Table VI, one may find that the DeepBiG predicts
well when the dataset is larger compares to CNN+BiLSTM
model. DeepBiG predictions accuracy for dataset EC, SA
and SC are 87.90%, 84.10% and 89.40% respectively.
CNN+BiLSTM model predictions accuracy for dataset EC, SA
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TABLE V. COMPARISON PERFORMANCE RESULTS IN TERM OF
ACCURACY, PRECISION, RECALL AND F1-SCORE FOR DIFFERENT TYPES

OF MODELS AND CLASSIFIERS

Models/Classifiers Time A (%) Class P (%) R(%) F1(%)
*DeepBiG 63 82.90 0 82 86 84

1 84 80 82
*BiGRU 360 78.10 0 84 71 77

1 73 86 79
*BiLSTM 628 80.30 0 80 83 81

1 81 78 79
*CNN 6 79.20 0 80 79 80

1 78 79 79
BiGRU+CNN 509 80.10 0 78 85 82

1 82 75 78
BiLSTM+CNN 635 79.90 0 81 80 80

1 79 80 79
*CNN+BiLSTM 99 81 0 87 74 80

1 76 88 82
BiGRU+CNN+BiGRU 830 80.90 0 81 82 82

1 81 79 80
BiLSTM+CNN+BiLSTM 1244 80.70 0 78 88 82

1 85 73 79
BiGRU+CNN+BiLSTM 978 80.70 0 81 82 81

1 80 79 80
BiLSTM+CNN+BiGRU 1261 79.60 0 77 86 81

1 83 73 78
NB 34 54.10 0 56 56 56

1 52 52 52
KNN 1826 57.10 0 58 60 59

1 56 54 55
RF 291 61.90 0 61 74 67

1 64 50 56

and SC are 87.40%, 83.80% and 88.80% respectively. Deep-
BiG has 0.5% more accurate compares to CNN+BiLSTM. But,
for dataset EA with total 14610 labelled data, the prediction
accuracy for DeepBiG is 0.5% less than CNN+BiLSTM. How-
ever, the overall training time for DeepBiG is faster compares
to CNN+BiLSTM.

TABLE VI. PERFORMANCE RESULTS IN TERM OF ACCURACY,
PRECISION, RECALL AND F1-SCORE FOR DEEPBIG MODEL AND

CNN+BILSTM WITH DIFFERENT DATASETS

Models Time A (%) Class P (%) R(%) F1(%)
DeepBiG-EA1 26 84.80 0 78 78 78

1 88 88 88
DeepBiG-EC2 37 87.90 0 82 76 79

1 90 93 92
DeepBiG-SA3 32 84.10 0 86 91 88

1 80 72 76
DeepBiG-SC4 53 89.40 0 91 92 91

1 87 86 87
CNN+BiLSTM-EA1 71 85.30 0 81 76 78

1 87 90 89
CNN+BiLSTM-EC2 57 87.40 0 77 83 79

1 92 89 91
CNN+BiLSTM-SA3 62 83.80 0 85 92 88

1 82 69 75
CNN+BiLSTM-SC4 105 88.80 0 93 88 90

1 84 89 87

.

EA - GM12878-ELK1 and K562-ARID3A with total dataset 14610.1 . EC - GM12878-
ELK1 and K562-CTCFL with total dataset 17117.2 . SA - GM12878-SP1 and K562-
ARID3A with total dataset 27274.3 . SC - GM12878-SP1 and K562-CTCFL with total
dataset 29781.4

VI. CONCLUSION AND FUTURE WORK

In this paper, the combination of k-mers encoding with
tokenizing have been introduced for the data pre-processing
phase. In the experiments, the DNA sequences are sized
from 2-mers up to 6-mers are considered. The hybrid deep
learning algorithms, we named it as DeepBiG is proposed

with combination of CNN and BiGRU. DeepBiG is simulated
and is analysed in terms of training time, accuracy, precision,
recall and F1-score. The results reveal that the proposed 4-
mers encoding DeepBiG gives better accuracy with 82.90%
when compares with other deep learning models and machine
learning classifiers. Although our model achieves better result,
there is a limitation of DeepBiG is overfitting. Therefore,
dropout and early stopping is adding into the model. There
are open researches for improving this model which may
still preserve the accuracy during learning, validation and
prediction phases. For example, noise deduction during data
pre-processing and reduces overfitting at model training phase.
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